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1 Introduction

The generalization of the AdS/CFT correspondence to dual pairs related to D3-branes at

singularities [1–3] has provided many new insights into the duality in situations of reduced

supersymmetry (for instance, [4–11]) or broken conformal invariance (for instance [12–17]).

Progress has been particularly significant for toric Calabi-Yau threefold singularities, for

which there exist powerful tools to study both the field theory and the CY geometry, like

dimer diagrams (aka brane tilings) [18–21], see [22, 23] for reviews. One of the most active

topics in this direction is the identification of gravity duals of the BPS operators of the

CFT and the derivation of BPS operator counting techniques [24–37].
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BPS operators with low conformal dimension are usually regarded as dual to supergrav-

ity modes [38]. However the systematic discussion of general BPS operators, including those

with a number of fields comparable with the number of D3-branes N , is most conveniently

carried out by considering all BPS operators to be dual to systems of supersymmetric D3-

branes on the 5d horizon [39]. These are generalizations of the familiar giant gravitons [40],

and of basic determinant operators [41–44]. Since most such operators carry non-trivial

charges under the baryonic symmetries of the quiver theory we refer to them as baryonic

operators. Note that in this language mesonic operators are a subset of baryonic operators

having vanishing baryonic charge. The correspondence between BPS baryonic operators

and supersymmetric wrapped D3-branes has been mostly based on a precise matching of

conformal dimensions and quantum numbers between the two kinds of objects. Namely,

without a more dynamical explanation of the fact that baryonic operators correspond to

wrapped D3-brane states.

In this paper we provide a dynamical understanding of the realization of the gravity

dual of baryonic operators in terms of wrapped D3-branes. Moreover the explanation

involves consideration of euclidean D-brane instantons, concretely E3-branes wrapped on

holomorphic 4-cycles of the CY in the presence of the gauge D3-branes. In crude terms,

the E3-brane instantons leads to insertions of baryonic operators in the gauge D3-branes,

at the level of the system of D3-branes on the CY geometry. The near horizon version

of the map is that the BPS baryonic operators is related to the boundary behaviour of

the E3-brane, which corresponds to a D3-brane wrapped on a supersymmetric 3-cycle.

The argument is tightly related to the very suggestive fact [45], already exploited in the

literature, that supersymmetric D3-branes on the horizon can be characterized in terms of

holomorphic 4-cycles on the CY singularity.

The holomorphic 4-cycles on which we wrap the E3 instantons are non-compact, and

thus one would say that the instanton action vanishes. We will assume the existence of

some effective cutoff for the volume of the cycle, generically given by the compactification

of the local geometry we are studying, and we will just be interested on the prefactor that

gives the field theory operator induced by the instanton, without entering into details of

how the setup could be embedded globally. Which field theory operator is inserted can be

determined by a purely local analysis near the D3 branes.

Note that in the above argument, the E3-brane instantons are considered dynamical,

in the sense that its non-perturbative effect is considered as included in the discussion.

This is in contrast with the recent use of E3-branes on 4-cycles as probes of vevs for

baryonic operators [46, 47]. However there is no contradiction, but rather a nice agreement,

between the two interpretations of E3-branes on 4-cycles. It is the analog of the familiar

statement [48] that a given AdS field encodes the information about both the insertion of

operators deforming the CFT, and about the vev of the operator in a given CFT vacuum

dual to a given gravity background. The latter is determined by the normalizable mode of

the AdS field, namely, the component decaying at the boundary, and can be detected by

considering a probe fluctuation of the field and evaluating its action. Similarly, in order to

measure the vev for a baryonic operator in a given gravity background, one can introduce

a probe with the appropriate asymptotics, namely given by a D3-branes on a 3-cycle. The
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corresponding probe is an E3-brane wrapped a holomorphic 4-cycle on the CY geometry,

and the exponential of its action measures the vev. This is similar to the computation of

a Wilson loop by a worldsheet with appropriate asymptotics.

The relation between E3-brane instanton effects on D3-branes at CY singularities and

BPS operators in AdS/CFT has a direct implication: the set of BPS operators in the quiver

CFT which can be generated from non-perturbative effects of BPS E3-brane instantons on

the CY must form a generating set of all CFT BPS operators. Also the boundary of a

given E3-brane instanton defines the baryonic D3-brane providing the gravity dual of the

corresponding BPS operator arising from the non-perturbative effect. Equivalently, the

E3-brane on the holomorphic 4-cycle corresponding to the baryonic D3 (i.e. constructed

as a cone over the wrapped horizon 3-cycle) must have a specific structure of fermion

modes charged under the D3-brane theory, and with appropriate E3-brane world-volume

couplings. In this paper we provide a systematic (and constructive) derivation of this

result, for systems related to D3-branes at toric singularities. This result provides a strong

support for our picture of E3-brane instanton effects as a first-principle derivation of the

AdS/CFT relation between BPS operators and wrapped D3-branes in AdS/CFT, and of

the use of E3-branes as probes of baryonic vevs.

Let us finish this introduction by remarking that the discussion in this paper is one in-

stance of a very general and deep relation between instantons in 5 dimensions and baryons,

and can be traced back to early studies of baryons as solitons in the Skyrme model [49].

More recently, this connection has also been realized in the context of Sakai-Sugimoto

models for holographic QCD [50]. The results of this paper generalize this correspondence

to the rich class of theories arising from D3 branes at toric singularities.

This paper is organized as follows. In section 2 we describe a basic example of the role

of E3-brane instantons in systems of D3-branes in local CY geometries, and its implication

for the near horizon AdS/CFT relation between baryonic operators and wrapped D3-brane

states. In section 3 we review the construction of general BPS operators and their dual

wrapped D3-brane states in AdS/CFT, for systems of branes at singularities. We discuss

the conifold example explicitly, and provide the generalization to arbitrary toric singular-

ities. In section 4 we describe the generation of general BPS 4d field theory operators by

E3-brane instantons, for systems with a single D3-brane. The arguments involve diverse

geometric/field theory operations, such as orbifolding, partial resolution/Higgsing, as well

as a very geometric discussion in terms of the mirror configuration of E2-brane instantons

on systems of intersecting D6-branes. Our analysis shows a one-to-one map between field

theory BPS operators and 4-cycles on which E3-brane instantons wrap, which exactly re-

produces the AdS/CFT relation. In section 5 we describe the generalization to arbitrary

number of D3-branes, where the map between operators and 4-cycles is more involved in

a sense that we make precise. Finally in section 6 we present our final comments.

2 E3-brane instantons and baryonic D3-branes

Let us consider a configuration of type IIB D3-branes, spanning 4d Minkowski space R1,3

and sitting at the singular point of Calabi-Yau threefold geometry. The gauge theory
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on the D3-brane world-volume is determined by the local structure of the singularity at

which the D3-branes sit. We consider the local singularity to be given by a real cone

C(H) over a Sasaki-Einstein 5d manifold H. The low energy dynamics of these branes is

a four dimensional N = 1 supersymmetric gauge theory with gauge group
∏

i SU(Ni), and

a set of chiral multiplets in bifundamental representations, see e.g. [8–10, 20] for details

on the construction of the field theory from geometric data of the singularity. We adopt

the viewpoint that all U(1) factors (except a decoupled one, which we ignore) are massive

due to B ∧ F couplings with RR 2-forms, and are therefore absent from the low-energy

dynamics. The Ni are positive integers, subject to the condition of anomaly cancellation

or cancellation of localized RR tadpoles. In this paper we focus on toric singularities, and

in the conformal case Ni ≡ N which automatically satisfies these constraints.

This type of local systems of D3-branes at CY singularities plays an important role in

two contexts, as local models of type IIB compactifications to four dimensions, and in the

gauge/gravity correspondence. The latter can be regarded as the near-horizon limit of the

former, leading to derivations of certain results in AdS/CFT. For instance, the fact that

a given AdS field φ is dual to certain operator O in the holographic field theory can be

obtained from the fact that in the original system of D3-branes on CY, there is a D3-brane

world-volume coupling φO.

In this section we argue that one can draw a similar relation between baryonic BPS

operators in the holographic field theory and AdS particles from D3-branes on 3-cycles on

the horizon, by considering E3-brane instanton effects on the initial system of D3-branes

in a singular CY geometry.

Let us consider a configuration of D3-branes at a local CY singularity. It is a nat-

ural question to consider the structure of field theory operators that can be induced by

non-perturbative effects in this setup. There are instanton effects, coming from wrapped

euclidean D-branes [51–54] (denoted E-branes henceforth) which can induce interesting

field theory operators [55–57]. In our setup, BPS instantons preserving half of the 4d

N = 1 supersymmetry arise from E3-branes wrapped on holomorphic 4-cycles in the inter-

nal space.1 In the non-compact setup, one should distinguish between E3-branes wrapped

on compact or non-compact 4-cycles. The E3 branes wrapped on compact cycles are clas-

sified by the nodes of the quiver, and correspond to gauge theory instantons when the

node is filled by two or more 4d gauge branes. Even if there is just one or no 4d gauge

branes filling the corresponding node, one can use field theory techniques to understand

the properties of the instanton, see e.g. [58–60]. We focus instead on E3-branes wrapped

on non-compact 4-cycles, passing through (or near) the singularity, so that they survive in

the near horizon limit to be taken later on. Note that our setup is a generalization of that

recently considered in [61], with emphasis on a different motivation.

In the non-compact setup these instantons have vanishing strength, but such instanton

effects become physical when the local model is embedded in a full-fledged compactification.

Some of the properties of the instanton depend on the global structure of the 4-cycle in

the compactification. For instance, the kind of 4d superspace interaction they induce is

1There are also E(−1) instantons, that we will not consider.
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determined by the number of unlifted fermion zero modes of the instanton. For simplicity,

we will assume that the instantons have only two uncharged fermion zero modes in an

appropriate compactification (the goldstinos of the two 4d N = 1 supersymmetries they

break) and therefore generate a non-perturbative superpotential (with the measure d2θ

saturating the two fermion zero modes). Note that this imposes some specific constraints

on the D3-brane, e.g. to be invariant under the orientifold action on the compactification,

with an O(1) Chan-Paton symmetry. This will not be very important for our analysis, and

in fact the presence of additional fermion zero modes will simply lead to the insertion of

additional operators DΦ in the resulting multi-fermion F-term, as studied in [62, 63], see

also [64] for a recent discussion.

Rather, our interest lies in the D3-brane field theory couplings induced by the non-

perturbative instanton effect. The basic structure of this coupling essentially depends only

on the local properties of the configuration, since it arises from the integration of the

charged fermion modes in the D3-E3 open string sector. These zero modes appear in the

instanton world-volume action via couplings to (combinations of the) bi-fundamental fields

of the 4d field theory, and integration over them leads to the insertion of a BPS operator

of the world-volume D3-brane field theory. The detailed mapping between E3-branes and

BPS operators will be discussed in coming sections, but it is useful to present now the basic

idea. Consider an E3-brane wrapped on a 4-cycle passing through the system of D3-branes.

The E3-D3 open string sector leads to charged fermion zero modes αĩ, βj , where ĩ, j are

gauge indices. These fields transform as a, b, respectively, of the SU(N)a×SU(N)b factor

of the D3-brane gauge theory. They couple to a 4d chiral multiplet Φab in the ( a, b) in

the instanton action, as

∆SE3 = αĩ Φab
ij̃

βj (2.1)

The detailed structure of zero modes and the form of the coupling can be deduced, as we

will argue in detail in section 4, from the cycle wrapped by the instanton and its Chan-

Paton factors. Integrating over the fermion zero modes (and assuming no extra fermion

zero modes beyond the two goldstinos), the instanton leads to a 4d superpotential

δinstW ≃ e−T detΦab (2.2)

where T denotes the modulus associated to the 4-cycle in an eventual global embedding of

the local configuration, and where the determinant contracts the color indices, as

detΦab =
1

N !
ǫi1···iN ǫj̃1···j̃N

(Φab)i1 j̃1
. . . (Φab)iN j̃N

(2.3)

Hence, the above instanton computation leads to a connection between 4-cycles in

the singular geometry and BPS (di)baryonic operators in the 4d field theory. This is an

example of the general correspondence to be studied in sections 4 and 5.

Let us now connect the above discussion to the usual AdS/CFT discussion for baryonic

operators. Consider the near horizon limit of the above system of D3-branes placed on the

singularity of C(H). As discussed in [2, 3] it corresponds to type IIB on AdS5 × H, with

N units of RR 5-form flux on H. The AdS/CFT implies that this background is exactly
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equivalent to the CFT arising from the world-volume D3-brane field theory considered

above. The precise dictionary relates operators O of the CFT to AdS fields φ, in a way

that can in many cases be derived from the existence of a coupling φO in the original

D3-brane world-volume field theory. In this sense, it is natural to expect that the dual of

the BPS baryonic operators is related to E3-branes on CY 4-cycles. In order to make this

manifest, recall that the source for the CFT operator O is given by the asymptotic boundary

configuration of the AdS object which produces its coupling. Thus we may expect that the

source for the BPS baryonic operators is given by the asymptotic boundary configuration of

the E3-brane on the CY holomorphic 4-cycle. The near horizon structure of a holomorphic

4-cycle is a conical 4-cycle C(S) whose base is a 3-cycle. The state providing the dual to

the baryonic BPS operator det Φab is thus an AdS particle given by D3-brane wrapped on

the 3-cycle S on the horizon.2 This therefore reproduces (and in a sense, explains) the

familiar relation between BPS operators and wrapped D3-branes, and the relevant role

played by holomorphic 4-cycles in their construction [39], see [30, 33, 34].

The above is just an example of a more general correspondence (which includes BPS

mesonic operators as well), which we establish in detail in this paper. For each BPS

operator O (in a suitable generating set of all BPS operators) in the CFT there exists an

E3-brane instanton wrapped on a holomorphic 4-cycle on the local CY geometry, such that

the non-perturbative instanton amplitude induces an insertion of the operator O in the

D3-brane world-volume theory. This requires a specific structure of fermion zero modes

and couplings to the CFT fields, which we clarify in sections 4 and 5.

As mentioned in the introduction, the effect of the E3-brane instanton on the 4-cycle

C(S) in the singular CY C(H) leads to an underlying explanation for two tools which are

widely used in AdS/CFT:

1. The interpretation of a D3-brane wrapping the 3-cycle S on the horizon H as the

gravity dual of the CFT operator O, and thus the general map between BPS operators

and supersymmetric wrapped D3-branes.

2. The use of E3-brane probes to measure baryonic condensates, since these probes pro-

vide configurations which asymptote to the baryonic D3-brane states in the previous

point.

3 Wrapped branes in AdS/CFT and BPS operators

In this section we review the construction of BPS operators in quiver gauge theories for

D3-branes at toric singularities, and the description of the dual states in AdS/CFT in

terms of supersymmetric D3-branes wrapped on 3-cycles, following [39]. The latter are

easily characterized in terms of non-compact 4-cycles of the singular geometry. We will

use the conifold as illustrative example, but simultaneously discuss the generalization to

arbitrary toric Calabi Yau singularities.

2By an argument similar to [39], we can argue that the asymptotic piece of the E3-brane has a Lorentzian

continuation to the wrapped D3-brane particle.
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3.1 Symplectic quotient construction and baryonic charges

The conifold variety X is usually described as the quadric xy − wz = 0 in C
4, but it can

be equivalently described as a symplectic quotient in the following way. Let us introduce

the four complex variables xr with r = 1, . . . , 4. If we give them the charges (1,−1, 1,−1)

under a C
∗ action we can write the conifold as the holomorphic quotient

X = C
4/(1,−1, 1,−1) (3.1)

In terms of a symplectic quotient, this corresponds to imposing the real D-term constraint

|x1|
2 + |x3|

2 − |x2|
2 − |x4|

2 = 0 (3.2)

and quotienting by the U(1) action in the above C
∗. To recover the usual equation for the

conifold we consider a basis of the C
∗ invariant monomials x = x1x2, y = x3x4, w = x1x4,

z = x2x3, which satisfy the constraint xy − wz = 0.

The low energy dynamics of a stack of N D3-branes at the conifold singularity is

a SU(N) × SU(N) gauge theory with bifundamental chiral fields A1, A2, and B1, B2

in the ( , ) and ( , ) respectively. The chiral fields interact with the superpotential

W = Tr(ǫijǫpqAiBpAjBq). The theory has a baryonic symmetry under which the fields

Ai, Bi have charge +1, −1, respectively. This baryonic symmetry can be regarded as a

global symmetry arising from a gauge U(1) symmetry in the U(N) × U(N) theory, which

has acquired a Stuckelberg mass due to a BF coupling.

The moduli space of the SU(N)2 theory contains the singular conifold (and all its

possible resolutions) in the following way [48]. Let us restrict ourselves to the N = 1

case for simplicity. In this case the gauge group becomes trivial, and the superpotential

vanishes too. The moduli space of such a (free) theory of 4 complex fields Ai, Bi is simply

C
4. The Kahler quotient described above represents the way in which the singular and

resolved conifolds foliate C
4. Imposing the moment map

|A1|
2 + |A2|

2 − |B1|
2 − |B2|

2 = ξ (3.3)

selects a particular size for the S2 in the base of the conifold, given by ξ. The overall

phase of the vevs for the different fields under the baryonic U(1) encodes the integral of

C4 RR-form over the S2.

Notice that there exist a (one-to-one in this case) correspondence between the ho-

mogeneous coordinate xr in the geometry and the elementary fields in the gauge theory

Ai, Bj . In particular the C
∗ action of the symplectic quotient construction is just the

complexification of the baryonic symmetry in gauge theory. This is just a reflection of the

familiar statement that the mesonic moduli space of a D3-brane is the transverse geometry,

see [36, 37] for a recent discussion of the mesonic and baryonic moduli spaces of D3-branes

at singularities.

The above structure generalizes to arbitrary toric singularities. This follows from their

definition as symplectic/holomorphic quotients of C
d by an abelian group K ∼ (C∗)d−3×∆,

where ∆ is a discrete group. Indeed, like in the conifold case, there is a relation between

– 7 –
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homogeneous coordinates in the symplectic quotient construction and chiral multiplets of

the D3-brane gauge theory. The relation however is in general not one-to-one, and to each

homogeneous coordinate in the geometry is associated more than one chiral superfield [11].

Also the D3-brane field theories have a set of baryonic symmetries, which can be regarded

as the U(1) factors in the U(N)× . . .×U(N) theory, eventually massive by the Stuckelberg

mechanism. In analogy with the conifold case, these baryonic symmetries can be related

to the U(1) symmetries in the symplectic quotient construction [36, 37].

3.2 The general set of BPS operators

According to the AdS/CFT correspondence the low energy gauge theory of N D3-branes on

R
1,3×C(H) is dual to string theory on the background AdS5×H, for a general CY conical

singularity C(H) with base a 5d Sasaki-Einstein compact manifold H [2, 3]. In particular,

the AdS/CFT correspondence predicts a one-to-one map between the BPS gauge invariant

operators on the field theory side and the BPS states on the gravity side.

Let us review this correspondence for the case of the conifold X = C(T 1,1), whose

gauge theory is dual to string theory on AdS5 × T 1,1. For our purposes it is useful to start

by considering the simplest baryonic operators detAi, det Bj.

ǫp1,...,pN
ǫk1,...,kN (Ai1)

p1

k1
. . . (AiN )pN

kN
= (det A)(i1,...,iN )

ǫp1,...,pN
ǫk1,...,kN (Bi1)

p1

k1
. . . (BiN )pN

kN
= (det B)(i1,...,iN ) (3.4)

As has been studied in [42], the AdS states corresponding to these BPS operators are

static D3-branes wrapping the S3 contained in the horizon manifold T 1,1 (with a specific

orientation). The specific 3-spheres are easily described using the homogeneous coordinates.

Given a supersymmetric 3-cycle C3 on the horizon manifold, the real cone C(C3) over it

defines a holomorphic non-compact 4-cycle on the Calabi-Yau singular geometry, which can

be described as the zero locus of the homogeneous coordinates. The baryonic operators

det Ai, detBj correspond to the 4-cycles xr = 0.

This basic idea can be exploited to reproduce the full spectrum of BPS operators of

the conifold theory, which includes many other operators. Indeed, the above are just the

baryonic operators with the smallest possible dimension: ∆det A,det B = N∆A,B. The full

set of BPS operators with the same baryonic charges as e.g. det A can be constructed as

follows. Following [39, 43] (with a different notation) we define the operators

AP = Ai1Bj1 . . . AimBjm
Aim+1

(3.5)

Namely, we construct an operator in the ( , ) with the same gauge and baryonic charges

as A, by concatenating a number of bifundamental fields with indices contracted, in a

pattern encoded in the multi-index P. In terms of the quiver we associate an operator to

any path, which we also denote P, obtained by concatenation of arrows corresponding to

A- and B-fields.

Given a set of N (possibly different) operators of that kind, denoted AP1
, . . . ,APN

,

we can construct the general ‘A-type’ baryonic operator as

OA
{P} = ǫp̃1,...,p̃N

ǫk1,...,kN
(AP1

)
p1k̃1

. . . (APN
)
pN k̃N

(3.6)
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One can similarly define B-type operators. Operators (3.6) provide the generalization of

the simplest baryonic operators (3.4). Note that e.g. all A-type operators carry the same

baryonic charges, but are of different conformal dimension. This set of operators provides

a basis of all BPS operators in the gauge theory (with mesonic operators arising from

products of A- and B-type operators, so that they carry no baryonic charge, and baryonic

operators of higher or lower baryonic charge coming from products of A-type and B-type

operators respectively).

It is possible to generalize this discussion to general toric singularities3 as follows [30].

Given one bifundamental chiral multiplet Φa,b in the ( a, b), one can form the basic di-

baryonic operator generalizing (3.4) by taking its determinant det(Φa,b). This corresponds

to the BPS operator with lowest dimension in the corresponding sector of baryonic charges.

More in general, one can construct an operator with baryonic charges proportional to N

under the baryonic symmetries U(1)a,b (not necessarily connected by a single arrow) by

considering N (possibly different) paths P1, . . .PN , in the quiver, joining the nodes a, b.4

Using the corresponding operators OP1
, . . . ,OPN

, all of which transform in the ( a, b),

we can construct

O{P} = ǫp̃1,...,p̃N
ǫk1,...,kN

(OP1
)
p1k̃1

. . . (OPN
)
pN k̃N

. (3.7)

Observe that, as in the conifold case, once we increase the baryonic charges we are interested

in, we are forced to consider product of operators like (3.7).

3.3 The gravity duals and holomorphic 4-cycles

The above description is well-suited to provide a construction of the states dual to these

BPS operators. Going back to the conifold example, recall that the basic baryonic op-

erators (3.4) are mapped to static D3-branes wrapping specific three cycles of T 1,1 in a

volume-minimizing fashion. Since we would like to describe states dual to operators with

the same baryonic charge but higher conformal dimension, we need to describe supersym-

metric D3-branes wrapped on the same homology class, but not in a volume-minimizing

fashion. The state nevertheless manages to remain BPS due to a non-trivial motion in the

horizon geometry, as for the giant gravitons in [40].

These states once again have a nice correspondence with holomorphic divisors on the

singular Calabi-Yau geometry. Recall that the baryonic charge of the simplest baryonic

states (3.4) is related to the C
∗ charge of the function whose zero locus defines the 4-cycle,

namely xi. Hence, the BPS operators in the same baryonic charge sector, but with higher

conformal dimension, are expected to correspond to 4-cycles defined as the zero locus of

a more general function of holomorphic coordinates, with the same degree of homogeneity

3For studying gauge theories dual to D3 branes at toric singularities it is most convenient to use dimer

model techniques, which also play an important role in our subsequent analysis. We include for convenience

a short introduction to dimer models in appendix A.
4Since the operators are defined modulo F-terms, it is more practical to define the operator using paths

joining faces in the dimer diagram. The equivalence modulo F-terms is related to the equivalence of paths

under homotopy deformations. Hence different paths correspond to homotopically different paths between

the faces a, b.
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under the C
∗ action. More formally, they correspond to different sections of the same

non-trivial line bundle over the CY variety.

Consider for example the case of a single D3-brane N = 1, and the set of 4-cycles

corresponding to BPS operators with baryonic charge B = 1. This is

fB=1(x1, x2, x3, x4) = c1x1 + c3x3

+c11;2x
2
1x2 + c13;2x1x3x2 + c33;2x

2
3x2

+c11;4x
2
1x4 + c13;4x1x3x4 + c33;4x

2
3x4 + · · · . (3.8)

where the coefficients, collectively denoted cP , parametrize the complex structure of the

divisor. This infinite family of holomorphic 4-cycles provides a description of all the possible

supersymmetric D3-branes wrapping the S3 in T 1,1 with positive orientation. The space

parametrized by the cP is a classical configuration space for the particles arising from the

D3-brane, which has to be properly quantized. Namely, the gauge theory BPS operators

should correspond to appropriate wavefunctions on the space parametrized by cP . Using

geometric quantization, one can determine that the different wavefunctions are given by

degree-N monomials on the cP [39]. We denote |cP1
, . . . , cPN

〉 the state corresponding to

the wavefunction

Ψ({cP }) = cP1
. . . cPN

. (3.9)

This state defines a particle in AdS5, whose dual BPS operator is obtained as follows:

using the relation between monomials in xr and bi-fundamental fields A,B, the monomial

corresponding to each cPα
corresponds to an operator APα

of the form (3.5), or its B-type

analog. The BPS operator dual to the state |cP1
, . . . , cPN

〉 is given by the operator O{P}

defined in (3.7). More general BPS operators can be generated by taking products of these.

The states in AdS side |cP1
, . . . , cPN

〉 correspond to wavefunctions related to a set of

N (coefficients of) such monomials in the homogeneous coordinates of C(H). The corre-

sponding BPS operator is a baryonic operator given by (3.7), or suitable products thereof.

This procedure extends to generic toric singularities [30]. For a general toric singularity

there is also a correspondence between a monomial in the homogeneous coordinates (hence

its coefficient cP in a general expansion) and operators (denoted OP ) given by a product of

bifundamental fields describing a path P in the quiver/dimer diagram of the gauge theory.

The major difference with the conifold case is that in the generic case the correspondence

between the homogeneous coordinate and the fields is one to many, as studied in detail

in [34]. The issue here is that, if the 4-cycle wrapped by the instanton has a non-trivial

homotopy group, we can construct different nontrivial flat bundles on the 4-cycle, and this

information about the bundle must be specified together with the purely geometrical data

in order to completely determine the map between wrapped branes and BPS operators.

This makes passing from the case of the conifold to the case of the general toric singularity

very nontrivial. In fact, to our knowledge, only in the orbifold case (which we discuss in

detail in section 4.4) is this map well understood in terms of the explicit data of the divisor

and the bundle.5

5We thank the referee for emphasizing this point to us.
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Nevertheless, in [34] a generic method to compute the multiplicities of the map from

cycles to operators is proposed, and it agrees well with the field theory result for nontrivial

toric singularities. This method admits a nice interpretation in the manifold mirror to the

toric variety. In appendix B of [34] it is discussed how once one goes to the mirror type

IIA side, the extra bundle data gets encoded into topological information of the cycles

wrapping the mirror surface Σ (for convenience, we have included a short review of the

relevant concepts in appendix A.2). We will use similar ideas in section 4.6 in order to

give evidence for our results in the case of geometries with multiplicities, which are less

understood from the type IIB side.

Thus, the AdS/CFT correspondence between BPS operators and wrapped D3-branes

is based on associating a holomorphic 4-cycle in the CY singularity to each concatenated

chain of bi-fundamentals in the field theory, in a way determined by the relation between

homogeneous coordinates (plus information about the bundle) and bifundamental fields.

Our proposal to provide a first principle derivation of this AdS/CFT map requires that

the E3-brane instanton wrapped on the 4-cycle induces a non-perturbative insertion of

precisely the dual BPS operator on the D3-brane field theory. This is explicitly shown for

toric singularities in the next two sections, by a combination of techniques.

4 BPS operators from E3-brane instantons: the single D3-brane case

In this section we consider E3-brane instantons on non-compact holomorphic 4-cycles in

general toric CY geometries, in the presence of a single D3-brane. We argue that they

provide a correspondence between 4-cycles in the singular geometry and BPS operators

corresponding to (part of the) 4d effective operator induced by the instanton. This cor-

respondence is in fact nicely correlated with the one described in the previous section,

lending support to our identification of E3 instantons with baryonic operators.

4.1 General considerations and result

Before going into details, let us summarize here the result we want to show, and the strategy

that we will follow in order to show it.

In this section we will restrict the discussion to the N = 1 case (here N denotes the

number of branes in the singularity), which already allows us to discuss the precise form

of the one-to-one map between BPS operators (and their wrapped D3-brane duals) and

E3-brane instanton effects on D3-branes on the CY. We postpone the discussion of the

complications arising from having N arbitrary to section 5. Although we do not provide

a formal proof, we present a sufficiently general line of argument, illustrated in several

explicit examples. Also, notice that the sugra approximation is expected to break down for

the N = 1 case, since the background will become strongly curved. Nevertheless, we expect

supersymmetry to protect the BPS sector and allow the discussion in terms of holomorphic

curves. Also, as we will discuss in section 5, the lessons we learn from studying this simple

case in the geometric regime can be carried over easily to the regimes of larger N , where

the sugra approximation is well justified.
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Let us start by stating our general proposal. Since for N = 1 the gauge group is trivial,

the set of “single determinant” BPS operators6 is described as the set of concatenated

chains of bi-fundamental multiplets, modulo F-terms. Equivalently, operators carrying

baryonic charges ±1 under two baryonic symmetries a, b, are associated to paths Pα joining

the corresponding faces in the dimer diagram, modulo homotopy transformations (see

appendix A for a short review on dimer diagrams). We denote this operator by OPα
.

Note that the indices a, b are implicit in this notation, and that we also use it for mesonic

operators, for which the paths are closed loops in the dimer. Let us denote ΣPα
the 4-cycle

that corresponds to one such operator by the AdS/CFT correspondence [30], as described

in the previous section. In this section we argue that, considering the configuration of a

single D3-brane at the CY singularity, the operator OPα
is precisely generated as (part of)

the amplitude of an E3-brane instanton wrapped on ΣPα
.

The appearance of OPα
in the instanton amplitude can be regarded as arising from

the integration over fermion modes in the E3-D3 open string sector, β, γ, in the a, b,

respectively, with a coupling in the instanton world-volume action

β OPα
γ. (4.1)

For mesonic operators, the modes β, γ form a vector-like pair. When OP involves several

bifundamental chiral multiplets, we refer to these couplings as “long”. The operator OP

takes zero vacuum expectation value exactly on the four cycle ΣPα
, while it gives mass to

the modes β, γ away from ΣPα
. This fact is a consistency check that the coupling (4.1) is

generated by an E3-brane instanton wrapped on ΣPα
.

Notice that the complete structure of the instanton amplitude may contain additional

insertions, due to extra fermion modes, etc, which actually depend on the details of the

global compactification. As explained in the introduction, we center our analysis in this

part of the instanton prefactor, which depends only on local properties of the configuration.

The simplest case in which we claim that our proposal holds is the case of a E3-brane

wrapped in a single irreducible cycle, which we expect to be associated to an operator OP

which does not factorize. We expect this close relation between factorizability of the cycle

and the operator to hold in general. Nevertheless, this is a somewhat subtle point, and we

want to clarify it in the following.

As discussed at the end of section 3.3, in the case of a general toric singularity it is

important to include the bundle data in the specification of the string dual to the baryon

operator. When we speak of factorizability and recombinability here, it is understood that

the bundle should be taken into account. More simply, one could frame the discussion in

the mirror manifold, as we will do in section 4.6.

Another issue is that, since in fact for N > 1 any BPS operator can be factorized as a

product of bifundamentals, we should clarify what happens for cycles which are reducible

but can be recombined into one smooth irreducible cycle.7 When ΣPα
is reducible, our map

6The name “single determinant” comes from the fact that in the case of general N such concatenated

chains give operators that can be written as a single determinant of the chain of fields. As we will discuss

in section 5, the set of single-determinant operators generate the whole set of BPS operators.
7A related issue for the case N > 1 is that any operator of the form det AB factorizes as detA detB.
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implies that the corresponding operator is generated by a multi-instanton process, with one

E3-brane wrapped on each component of the reducible 4-cycle (see [65] for instantons on

reducible cycles, and [64, 66–68] for recent papers on multi-instantons). Multi-instantons

imply additional zero modes, and the discussion of their 4d amplitude is more involved.

Nevertheless, we argue that the general statement of the relation between 4-cycles ΣP and

BPS operators OP holds in general, by applying the following deformation argument. It is

possible to regard the reducible cycles f = 0, e.g. xy = 0 or x2 = 0, as singular limits of

irreducible 4-cycles f + ǫg = 0 like xy − ǫ = 0 or x2 − ǫy = 0. Note that here ǫ should be

regarded not as an instanton bosonic mode, to be integrated over, but rather as a tunable

parameter fixed by boundary conditions, or the complex structure moduli of the global

compactification.8 The 4d amplitude of the irreducible instanton leads to the 4d operator

f +ǫg, as in the above paragraphs. In the limit ǫ → 0, the instanton becomes reducible and

seemingly more complicated. However, the dependence in ǫ determined away from that

point can be extended using holomorphy9 of the 4d non-perturbative F-term in the (com-

plex structure dependent) parameter ǫ. Hence at ǫ = 0 it must reduce to just an insertion

of f (despite the fact that the process generating this insertions may be rather involved).

Thus we expect our general arguments to apply even for reducible 4-cycles which admit

a recombination into a single smooth one, ΣP = Σ1 + · · · + ΣK . The complete operator

generated by the multi-instanton process defined by ΣP is given by the concatenation of

the operators generated by the different instantons associated to the individual Σi. Clearly

this implies that all “single determinant” operators of the N = 1 theory, defined by a

path of concatenated bifundamentals, can be regarded as generated by a recombinable

multi-instanton of this kind. On the other hand, “multi determinant” operators of the

N = 1 theory, defined by products of the above, namely by several non-concatenable

paths, correspond to multi-instanton processes which do not admit a recombination into a

single smooth one. Correspondingly, these are indeed described by multi-particle states in

AdS/CFT, arising from different wrapped D3-branes. We therefore focus on “single deter-

minant” operators, since they contain all the essential information about the spectrum of

BPS operators. We will apply the above considerations about recombinability when nec-

essary, and even abuse language using couplings like (4.1) in such situations, and treating

the process as a single-instanton one.

As mentioned above we will not provide a formal proof of the correspondence, but we

will argue in several different ways for the existence of the couplings and zero modes that we

require. Let us provide here a short summary of the arguments in the rest of this section.

Sections 4.2 and 4.3 review some results already known in the literature which support

our viewpoint, for the particular cases of single field and mesonic operator insertions.

8We force the recombination of the instantons by changing their complex structure. See [65] for a

discussion of instanton recombination by motion over Kahler moduli space.
9See [64, 66] for a general discussion of holomorphy of non-perturbative superpotential and higher F-

terms, and reducible instantons in loci in Kahler moduli space. Although here we are interested in the

(much more holomorphic) discontinuity complex codimension one loci in the complex structure moduli

space in the spectrum of BPS branes, the microscopic analysis for those systems could be carried out in a

similar spirit for the systems at hand to show the continuity of the 4d contribution as ǫ → 0.
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Section 4.4 argues that couplings of the form (4.1) are present for any orbifold singularity.

The argument proceeds essentially by orbifolding the results known from flat space. Then,

by using partial resolution, section 4.5 argues that such couplings are present for any

toric singularity.

Section 4.6 gives an independent argument for the validity of our result. We show

explicitly how we can find the disc worldsheet instantons giving the coupling (4.1) in

some simple situations. This picture has the advantage that everything is geometrical

(in particular, there are no subtleties having to do with Chan-Paton factors), but also

has the drawback that the special Lagrangian cycles dual to the cycles wrapped by the

instanton are not explicitly know. Nevertheless, we argue that with a reasonable ansatz for

the topology of the dual cycles (based on the well-understood single insertion case), one

obtains couplings of the form (4.1).

4.2 Single field insertions

The simplest BPS operators of the form described above in the N = 1 theory are given by

the bi-fundamental chiral multiplets Φab themselves. The correspondence between branes

wrapped on 4-cycles and such bifundamentals has already been considered in appendices

of [69] for D7-branes, and of [61] for E3-brane instantons. Indeed, using dimer diagrams

it is straightforward to verify that to a given bi-fundamental multiplet one can associate a

divisor in the singular geometry, such that an E3-brane wrapped in the latter has fermion

zero modes β, γ, coupling as β Φabγ. In our present setup, we regard this result as the

simplest realization of the correspondence between 4-cycles and BPS operators of the N = 1

theory. In fact, it was already argued in these papers that this correspondence is exactly

the same as that obtained from the AdS/CFT correspondence.

4.3 Mesonic operators

Let us argue that this correspondence applies also to mesonic operators, a discussion in

fact related to systems studied in [70–72]. The consideration of mesonic operators will

naturally provide us with examples of the correspondence beyond single field insertions.

Consider the simplest situation of a single D3-brane in flat transverse space C
3, para-

metrized by (z1, z2, z3). Abusing notation, we also denote zi the D3-brane adjoint chiral

multiplets, parametrizing the D3-brane position. Consider an E3-brane instanton wrapped

on the 4-cycle defined by e.g. z1 = 0. In the E3-D3 open string sector there are fermion

modes β, γ, with a world-volume coupling βz1γ, which reflects that the separation of the

branes in z1 controls the mass of these modes. Thus, integration over these instanton

fermion modes leads to an insertion of the mesonic operator z1, similarly to the previous

section. Notice that we manifestly recover the AdS/CFT map between the 4-cycle z1 = 0

and the BPS operator z1.

This is just the E3-brane version of the result in [70] for non-perturbative effects of

D7-branes in presence of D3-branes. It is also a particularly simple realization of the

effect computed in [71].10 In this paper, the authors considered the non-perturbative

10Related results appear in [72], where the computations are done from the open string viewpoint. This

is similar in spirit to our computations in this section.
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superpotential generated by gaugino condensation on D7-branes wrapped on a non-compact

4-cycles, in a warped deformed conifold background, as a function of the location zi of one

D3-brane. The result involved a computation of the change of warped wrapped volume as

a function of this position, leading to a modification of the instanton amplitude of the form

(adapting already to E3-brane instantons rather than the fractional instantons involved in

D7-brane gaugino condensates),

S =

∫

d2θ f(zi) e−T (4.2)

where f(zi) = 0 is the equation of the 4-cycle wrapped by the instanton brane.

In fact, many of the ingredients of the configuration, like the 3-form fluxes, the complex

deformation, or even the fact of being at a conifold, are actually not essential. The result has

much more general validity, since it amounts to a computation in the closed string channel of

the annulus diagram that corresponds to integrating over E3-D3 instanton fermion modes.

Applied to our flat space example, the instanton wrapped on the 4-cycle z1 = 0 leads to

the insertion of the (mesonic) operator z1.

The argument applies to general singularities. Since a general mesonic operator corre-

spond to a holomorphic function f(zi) on the singular geometry, an instanton wrapped on

the divisor f(zi) = 0 leads to a 4d effective vertex containing the mesonic operator f(zi).

From the viewpoint of the instanton, this arises from integrating over E3-D3 fermion modes

β, γ, with couplings βf(zi)γ, reflecting that they become massive as the E3-brane is moved

away from the D3-branes (namely, when the defining equation is modified to f(zi)=ǫ). This

shows the existence of general “long” couplings of the form (4.1), for mesonic operators.

For example consider a single D3-brane on a conifold described as xy − zw = 0, and

an E3-brane wrapped on z = 0. In terms of the underlying D3-brane field theory, the

coordinates are mesonic operators,

A1B1 = x , A2B2 = y , A1B2 = w , A2B1 = z (4.3)

So the non-perturbative E3-brane instanton reads (assuming it generates a superpotential)

∫

d2θ A1B2 e−T (4.4)

Hence in general, for any given mesonic operator OP of the N = 1 theory there is a 4-

cycle such that the wrapped E3-brane instanton leads to an insertion of OP in the 4d

effective action.

Notice the fact that the couplings of the form (4.1) involve the operator OP modulo

F-terms should be clear at this point. In fact, the rewriting of a mesonic operator in terms

of the underlying fields is an operation which is defined modulo the F-term relations.

4.4 Long baryonic couplings for orbifolds

We have argued that instantons can generate a variety of long couplings and BPS operators

for some simple singularities. One simple way to show the appearance of long couplings in

more general and more involved singularities is orbifolding. For instance, we may consider
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orbifolds of C
3 by a discrete subgroup Γ of SU(3), which we take to be abelian in order for

the orbifold to admit a toric description. The gauge group splits as a product (maintaining

the U(1) for momentary convenience) of U(1)K with K the order of Γ, and each adjoint

of the parent theory leads to a set of bi-fundamentals. For instance, considering the Z3

orbifold generated by a rotation (1
3 , 1

3 ,−2
3), the three adjoints X, Y , Z lead to bifunda-

mental fields Xi,i+1, Yi,i+1, Zi,i+1, transforming in the ( i, i+1). The superpotential of the

theory is obtained by replacing the original adjoints in the parent superpotential by the

bifundamentals they lead to, in all possible ways consistent with gauge invariance. Namely

W = Xi,i+1Yi+1,i+2Zi+2,i − Xi,i+1Zi+1,i+2Yi+2,i (4.5)

In this orbifolding process, the fate of E3-brane instantons is easy to determine. In

performing the quotient, one needs to specify the action of Γ on the Chan-Paton indices

of open strings with endpoints on the E3-brane. The choice of this Chan-Paton phase,

determines with which of the possible bi-fundamentals the corresponding E3-D3 fermion

zero modes will couple in the quotient theory.

Consider a concrete example, corresponding to instantons leading to single field in-

sertions. Consider an E3-brane defined by X = 0 in the C3 theory, thus leading to the

insertion of the mesonic operator X in the 4d effective action. In performing e.g. the Z3

quotient described above, there are three possible choices of Chan-Paton phase for the

E3-brane. This phase enters in the orbifold projection on the E3-D3 fermion zero modes,

and determines the coupling of the survivors to one of the three bifundamentals X12, X23,

X31 in the quotient theory. Therefore each of the three possible E3-branes in the quotient

theory lead to the insertion of one of these baryonic operators. One can operate similarly

to obtain instantons with couplings to the other bifundamentals Yi,i+1 or Zi,i+1 in the

quotient theory. Notice that single field insertions for orbifold theories already provide the

simplest realization of the orbifolding procedure we are discussing in the present section.

Before continuing, let us make a few remarks on this simple example, which generalize

to arbitrary orbifolds. First notice that orbifolding allows to deduce the appearance of

baryonic operators from information on the appearance of mesonic operators. Notice also

that this examples illustrates the above discussion on reducible vs recombinable cycles in

section 4.1. Consider a system of three E3-branes, in the above C
3/Z3 example, each with

one of the possible choices of Chan-Paton phase. The system of three E3-branes can recom-

bine into a single dynamical E3-brane which can move away from the singularity. From our

discussion in section 4.3, such E3-brane leads to the insertion of the mesonic operator whose

vev parametrizes the E3-D3 distance. Indeed this agrees with our discussion of reducible

4-cycles which can recombine. The three different E3-branes lead to insertions of the op-

erators X12, X23, X31. Taken together, the multi-instanton process they generate leads to

the insertion of their concatenation, namely the mesonic operator X12X23X31, which in

fact corresponds to the coordinate controlling the E3-D3 distance in the quotient theory.

Finally, the Z3 orbifold singularity also illustrates an interesting feature in mapping

the BPS operators under discussion, and the corresponding 4-cycles, with the E3-brane

instantons. Indeed, the choice of Chan-Paton factor for a given 4-cycle can be described

geometrically as the choice of a holonomy at infinity for the world-volume gauge field.
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Equivalently, the 3-cycle defining the base of the conical 4-cycle is non-simply connected,

and there is a discrete choice of Wilson line. This implies that in the AdS theory, for this

3-cycle there are different wrapped D3-brane states, which correspond to different baryons.

This is nicely correlated with the existence, for such 4-cycle, of different E3-branes, coupling

to different bifundamentals. This provides another nice piece of agreement between the

E3-brane and the D3-brane viewpoint on BPS operators of the field theory.

Let us describe the extension of the above orbifolding procedure to operators involving

several fields. Consider for instance the C
3 theory with an E3-brane leading to the operator

X2, which in fact corresponds to a system of two E3-branes recombinable into a single one.

Performing the quotient by the above Z3 action, one needs to specify the Chan-Paton

action on the E3-branes. Choosing the same Chan-Paton phase for both would lead to

operators of the form e.g. X12X12, for which the two fields cannot be concatenated. This

signals that the two E3-branes in the quotient cannot be recombined (the recombination

parameter has been projected out by the quotient), hence it corresponds to an unavoidable

genuine 2-instanton process. On the other hand, choosing different Chan-Paton phases

leads to E3-branes generating insertions like e.g. X12X23, namely long baryonic operators.

These systems correspond to E3-branes which admit a recombination into a single one, and

work as an overall single-instanton process. As already mentioned, we focus on this kind

of system, namely on E3-brane systems leading to concatenated chains of bifundamentals.

This construction generalizes easily to obtaining the orbifold descendants of general

operators of the C
3 theory. For instance, operators like XY lead to operators X12Y23,

X23Y31, X31Y12. The choice of Chan-Paton phase on the E3-brane system determines the

endpoints of the chain of bifundamentals (namely the baryonic charges of the operator).

The generalization should be clear. An important observation concerns the absence of

ordering ambiguities thanks to the use of F-term relations. For instance, consider the

operator Y 2Z2 in C
3, and two of its possible descendants for a given choice of Chan-Paton

action e.g. Y12Y23Z31Z12 and Y12Z23Y31Z12. These turn out to be identical upon using the

F-term equation for X12, namely Y23Z31 = Z23Y31, as obtained from (4.5).

4.5 Long baryonic couplings for general singularities from partial resolution

In the previous section we have described the generation of long baryonic operators for

orbifold theories by E3-brane instantons. Since partial resolutions of orbifold singulari-

ties can lead to non-orbifold singularities, we may follow the effects of partial resolution

on E3-brane instantons in order to study long baryonic operators from E3-brane instan-

tons in non-orbifold singularities. In fact, since any toric singularity can be regarded as

the partial resolution of an orbifold singularity (of sufficiently large order), partial reso-

lution can be used to obtain a general correspondence, for arbitrary toric singularities,

between single determinant BPS operators and E3-branes on 4-cycles.11 This correspon-

dence is nicely correlated with the map between BPS operators and 4-cycles defined by the

AdS/CFT correspondence.

11In [73] the couplings of flavour D7 branes were studied in the T-dual brane tiling picture, and a subset

of the “long” couplings we discuss in this section were argued to exist.
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The main effects that a BPS operator (and the E3-brane instanton generating it) can

suffer in a process of partial resolution are the following.

• All bifundamental fields in the chain defining the operator descend to fields in the

resolved theory. The operator is unchanged and described by the same chain of fields

in the resolved theory.

• One of the bifundamental fields in the chain gets a vev. The operator in the resolved

theory is obtained by simply removing this bifundamental from the chain. Namely if

the initial operator (OP )ab = (OP1
)acΦcd(OP2

)db, with Φdc getting a vev, the operator

in the resolved theory is (O′
P ′)ab = (OP1

)ac(OP2
)db. The operator remains “single-

determinant” since the vev for Φcd breaks of the two gauge factors c, d to the diagonal

combination, so that the two sub-chains can be concatenated.

• One of the bifundamental fields in the chain becomes massive by superpotential

couplings and is not present in the resolved theory. Consider the operator (OP )ab =

(OP1
)acΦcd(OP2

)db, with Φcd becoming massive. To obtain the resolved theory the

bifundamental is integrated out by using the F-term relations, which relate its value

to some single determinant operator (possibly identically zero) say Φcd = (OP3
)cd,

involving fields that survive in the resolved theory. Since the BPS operators generated

by the instantons should be understood modulo F-terms, the resulting operator in the

resolved theory is simply (O′
P ′)ab = (OP1

)ac(OP3
)cd(OP2

)db. This manifestly remains

a single-determinant operator, i.e. a concatenated chain. In general, the replacement

via F-term relation may require the replacement of a sub-chain in general longer than

one bifundamental field.

• The above two operations act quite trivially on the E3-brane, which still passes

through the singularity after the process. There is however a situation where this

geometrical property of the E3-brane changes. Notice that in a process of partial res-

olution some baryonic charges disappear. This implies that some baryonic operators

lose their non-trivial charges and become mesonic in the resolved theory. For an oper-

ator (OP )ab this happen when the groups a, b are broken to the diagonal combination.

The interpretation in terms of the E3-brane instanton is that the blowing-up process

has grown a 2- or 4-cycle which separates the E3-branes from the D3-brane stack.

Let us discuss these main features by considering an illustrative example. Consider

C
3/(Z2×Z2), with the orbifold generators associated to the twists (1

2 ,−1
2 , 0) and (0, 1

2 ,−1
2 ).

The gauge group of the orbifold theory contains four factors, and the C3 adjoints lead

to the bifundamental fields X12, X21, X34, X43, Y23, Y32, Y14, Y41, and Z31, Z13, Z24,

Z42, in hopefully self-explanatory notation. The superpotential has the structure W ≃

XY Z−XZY , with indices distributed in all possible ways consistent with gauge invariance.

The dimer diagram is shown in figure 1a. Figures b and c provide the partial resolution

to the SPP and the conifold, which we are about to use, obtained by giving vevs to the

fields X34 for the SPP, and to X34, Z31 for the conifold. The dimer is a convenient tool to

represent BPS operators, which correspond to paths joining two faces (which are the same
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for mesonic operators), modulo homotopy deformations (F-term relations). The effects

described above appear in this example as follows:

• The operator X43X34Y41 in the orbifold theory descends to the operator X43Y41 in

the SPP theory (which corresponds to a concatenated chain since the groups 3 and

4 become identified in the SPP theory).

• Consider the operator Z13Y32 in the unresolved orbifold theory. The field Z13 ends

up as a massive one in the resolution to SPP, as is manifest in the dimer, where it

enters a bi-valent node. It is however simple to deform the path in the SPP dimer to

obtain the operator X12Z24Y32 which is a concatenated chain (since 3 and 4 become

identified) of fields massless in the SPP theory. This amounts to just using the F-

term equivalence Z13X34 = X12Z24 in the unresolved orbifold theory and replacing

X34 by its vev.

• It is easy to find baryonic operators of the unresolved orbifold theory which become

mesonic upon losing its baryonic charges in the partial resolution. The simplest

example is just X43, which is a mesonic operator in the SPP theory.

It is easy to realize that the realization of general toric singularities as partial resolution

of orbifolds allows to reverse the above line of argument. Namely one can show that any

BPS operator associated to a chain of bifundamentals in the non-orbifold theory can be

regarded as the resolved version of a chain of bifundamentals in the orbifold theory. This

construction produces the general map between arbitrary single determinant BPS operators

for toric field theories and E3-branes instantons on 4-cycles producing them.

The correspondence can be easily argued to agree with the AdS/CFT map between

operators and wrapped D3-branes, given that the chain of bifundamentals can be regarded

as a monomial in the homogeneous variables of the symplectic quotient of the construction,

which provide the defining equation for the 4-cycle on which to wrap the E3-brane. This

is precisely the map used in the AdS/CFT context.

Finally, let us point out an interesting crosscheck allowed by partial resolution. Con-

sidering the conifold theory in figure 1c, it is possible to resolve it completely to C
3 by

giving a vev to any of the bi-fundamentals. This partial resolution allows to recover long

couplings in the C
3 theory by starting with long couplings of the conifold theory. We

have thus closed the circle and obtained a consistent picture of all operators which can be

generated using E3-brane instantons. Thus by orbifolding and partially resolving, one can

reach the general result that any single determinant BPS operator can be generated from

a suitable E3-brane instanton.

4.6 The D6-brane mirror picture

We can provide further arguments in favour of the couplings previously discussed by using

the mirror of the system of D3-branes at the singularity. These are described in ap-

pendix A.2, following [21]. The mirror W of a toric Calabi-Yau variety M can be obtained

starting from its toric diagram [74–76], as follows. Assign complex coordinates x, y to the
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3/4
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Figure 1. The dimer diagram for the C3/(Z2 × Z2) theory (a) and its partial resolution to the

SPP singularity (b) and the conifold (c). In order to keep the relation to the unresolved orbifold

theory, we have not integrated out the bifundamental fields in di-valent nodes (mass terms in the

superpotential).

two axis of the toric diagram and associate a monomial xiyj to the point with coordinates

(i, j) in the toric diagram. Define the polynomial P (x, y) as the sum of all these monomi-

als with arbitrary complex coefficients.12 The mirror variety W is defined by the equation

P (x, y) = uv where the coordinates u, v take values in C
∗. We can represent W as a double

fibration over the complex plane with coordinate z

uv = z , P (x, y) = z. (4.6)

The first equation describes a C
∗ fibration, while the second equation describes a fibration

of a Riemann surface. The structure of W is essentially encoded in the latter fibration,

and in particular on the fiber over z = 0. The Riemann surface P (x, y) = 0 has genus

equal to the number of internal points of the toric diagram and punctures corresponding

to the external edges of the dual diagram C∗. For example in the conifold case we have a

Riemann surface that is topologically a sphere with four punctures, given by the defining

equation: P (x, y) = 1 + x + y + xy (see figure 2). In this mirror geometry, the gauge

D3-branes correspond to D6-branes wrapped on 3-cycles, which project on the Riemann

surface to non-trivial 1-cycles wrapping non-trivially around the different punctures, in a

way determined by the dimer diagram, see appendix A.2. Intersections of these 1-cycles

support bifundamental chiral multiplets, while oriented disks defined by different 1-cycles

support worldsheet instantons leading to superpotential couplings.

The mirror picture provides a nice geometric realization of the euclidean instanton

branes, their charged fermion zero modes, and their couplings, as we now describe. The

mirror picture of the E3-branes corresponds to E2-branes wrapped on non-compact special

Lagrangian 3-cycles, which project as 1-cycles in the Riemann surface, escaping to infinity

along two punctures. In fact, some of these non-compact 3-cycles have appeared (describing

12These complex coefficients parametrize the complex structure of the mirror manifold W, and they are

mapped to the Kahler structure parameters of M under the mirror map. Their values are not relevant for

our simplified discussion.
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x y

A 1

B1

A2

B2

1

y

x

Figure 2. The mirror Riemann surface for the conifold, with punctures shown as crosses. The

two 1-cycles in green and blue correspond to the two D3-brane gauge groups and the pink 1-cycle

connecting the two punctures corresponds to the E3-brane instanton. The disk leading to the

coupling αA1β is painted in red stripes. The instanton amplitude thus produces an insertion of

the field A1 (for the N = 1 theory) in the D3-brane field theory. The right hand part of the figure

shows the toric diagram for the conifold and its (p, q)-web.

the mirror of flavour D7-branes) in [69]. The intersection of the E3-brane non-compact

1-cycle with the D3-brane compact 1-cycles lead to charged fermion zero modes of the

E3-brane instanton. Also, the disks bounded by a given E3-brane non-compact 1-cycle

and the D3-brane compact 1-cycles in the Riemann surface support worldsheet instantons

contributing to the couplings of the E3-brane instanton to a BPS operators in the 4d

field theory.

The explicit map between holomorphic 4-cycles and special Lagrangian cycles is not

know in general, thus in our analysis we consider a shortcut. We start with a basic set

of non-compact 1-cycles, which correspond to E3-branes with fermion modes coupling to

the basic bifundamental chiral multiplets. In addition, we construct more general E3-

brane 1-cycles by combining basic 1-cycles which share a common puncture. The physical

interpretation is that one can form bound states of the basic 1-cycles by giving vevs to

fields in the E3-E3’ open string sector, triggering recombination of cycles. The fermion

zero modes and couplings of the resulting combined 1-cycle are manifest from the Riemann

surface picture, and agree with the naive field theory analysis. Let us explain this procedure

using the conifold example.

Consider the 1-cycles corresponding to the E3-brane instantons coupling to the ele-

mentary fields Ai, Bj in the conifold theory. As mentioned above, they are non-compact

1-cycles stretched between punctures, and defining suitable disks involving the correspond-

ing bifundamental. The 1-cycles corresponding to E3-branes with the desired structure of

fermion zero modes and couplings, namely αAiβ, αBjβ, are shown in figure 2. Note that

the pink 1-cycle on the Riemann surface seems to define two disks, to its right and its left.

However, only the disk on the right has a well-defined boundary orientation, and can really

support a worldsheet instanton.

As discussed above, these basic cycles correspond to holomorphic 4-cycles (defined by
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(c)

integrate outdeformation

(a) (b) 

Figure 3. The two E2-brane instantons (a) can be recombined to a single E2-brane instanton (b)

with coupling αA1γ + γδ + δB1β. After integrating over the two modes γ, δ the coupling in (b) is

equivalent to αA1B1β, as shown pictorially in (c). Integration over the remaining modes leads to

the appearance of the mesonic BPS operator A1B1 in the instanton non-perturbative amplitude.

the equations xr = 0 in the homogeneous coordinates), and thus define supersymmetric

3-cycles in the mirror picture. Consider for instance the two basic 1-cycles giving rise to

instantons coupling to A1, B1. In the type IIB picture, the two instantons correspond

to two 4-cycles, x1 = 0 and x2 = 0. This is a situation where we argued that the two-

instanton process can be regarded as a limit of a one-instanton process, for a single E3-brane

instanton wrapping the recombined 4-cycle x1x2 + ǫ = 0, in the limit ǫ → 0. Even in this

limit, there is a non-trivial contribution of the instanton, leading to the insertion of the

BPS operator A1B1. We can now show that this construction is nicely reproduced using

the mirror picture.

Consider the two basic E3-brane 1-cycles in figure 3a, describing instantons with

fermion modes and couplings αA1γ, δB1β. The two 1-cycles share a common puncture,

corresponding to the fact that the IIB 4-cycles intersect over a complex curve. This inter-

section supports an E3-E3’ mode φ33′ (for whose existence we choose appropriate boundary

conditions at infinity) with couplings γφ33′δ, which follows pictorially from a disk in the

Riemann surface. A vacuum expectation value for this mode corresponds to the defor-

mation parameter ǫ mentioned above, leading to a single E3-brane bound state, whose

recombined 1-cycle is shown in figure 3b. The triangle structure in the resulting picture

lead to couplings αA1γ + γδ + δB1β. One can thus integrate over the charged fermionic

modes γ, δ and obtain the coupling αA1B1β. This corresponds pictorially to deforming the

1-cycle to figure 3c. Further integration over the remaining modes leads to the insertion of

A1B1 operators in the 4d instanton amplitude.

In fact, even in the two-instanton process (with no recombination), one can use the

couplings in figure 3a to saturate over the zero modes γ, δ, α, β and obtain the insertion of

the operator A1B1 from the two-instanton process. In what follows, we will abuse language

and use the above pictorial representation to discuss processes involving multi-instantons

which can recombine into a single one, even when no actual recombination is implied. The

procedure can be describe using two simple rules:

• Two instantons coming in and out of the same puncture can be recombined into a

single instanton.
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(c)

deformation integrate out

(b)(a)

Figure 4. The three E2-brane instantons (a) can be recombined to a single E2-brane instanton

(b) with coupling αA1γ + γδ + δB1µ + µν + νA2β. After integrating over the four modes γ, δ, µ,

ν the coupling in (b) is equivalent to αA1B1A2β, as shown pictorially in (c). Integration over the

remaining modes leads to the appearance of the baryonic BPS operator A1B1A2 in the instanton

non-perturbative amplitude.

• One can deform 1-cycles to eliminate disks involving two intersections between the E3-

and D3-brane 1-cycles (mass terms for non-chiral fermion modes). This correspond

to integrating over the massive charged fermionic modes.

Consider a further example, leading to an instanton coupling to the operator A1B1A2.

The pictorial representation, according to the above rules, is shown in figure 4. The

combined instanton system can be regarded as having the fermion modes and couplings

αA1γ + γδ + δB1µ + µν + νA2β. Once we integrate over the four fermion modes γ, δ, µ,

ν we obtain the equivalent coupling αA1B1A2β represented by the disk in the last figure.

Integrating over these two charged zero modes give rise to the non perturbative insertion

of the operator A1B1A2.

It is important to underline that there are other situations where the multiple instan-

tons behave as individual objects. These processes lead to many additional zero modes,

coming e.g. from the individual goldstinos of the different instantons. Moreover, each in-

stanton carries its set of charged fermion zero modes, and integration over them leads to

the insertion of a BPS operator. Hence the multi-instanton process leads to a “multi-

determinant” BPS operator in the field theory (and correspondingly, the boundary of the

4-cycles corresponds to a multi-particle set of D3-branes). This also has a nice interpreta-

tion in terms of the mirror geometry. E3-brane instantons which cannot form a bound state

are described by 1-cycles which cannot recombine according to our above rules. Namely,

they do not share a puncture, or they do not have correct orientations when they do. The

structure of fermion modes and couplings from the Riemann surface automatically leads

to the insertions of “multi-determinant” BPS operators.

Let us consider a simple example. Consider the two 1-cycles in figure 5. They describe

two mutually BPS instantons, each of them coupling to A1, which cannot be recombined

(due to mismatch of orientations at the common punctures). In the IIB picture this corre-

sponds to the embedding equation x2
1 = 0. Namely two E3-brane instantons wrapped on

the 4-cycle x1. The system cannot form a bound state, since the equation x2
1 = 0 cannot

be deformed into a single one in a way consistent with the C∗ quotient. From the mirror
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Figure 5. The 1-cycles describing instantons with couplings α1A1β1 +α2A1β2. The two-instanton

process leads to the insertion of the operator A2

1
for N = 1, or (det(A1))

2 for general N .

picture, we see that the instantons have fermion modes and couplings α1A1β1 + α2A1β2.

Integrating over the charged zero modes αi, βj we have an insertion of the operator A2
1.

Since the bi-fundamental structure of A1 does not allow a concatenation of the two inser-

tions, this corresponds to a “multi-determinant” operator. Equivalently, considering the

theory for arbitrary N , the instantons generate the insertion of the operator (det(A1))
2.

5 BPS operators from E3-brane instantons: extension to N D3-branes

In the previous section we have shown a remarkable relation between the E3-brane em-

beddings in C(H) and the BPS operators in the quiver theory of a single D3-brane at the

singular point. Namely, once we specify the geometric embedding and the holonomy at

infinity of the world volume gauge field, the E3 brane generates dynamically the corre-

sponding BPS operator. In this section we discuss the map between E3-brane instantons

and BPS operators for systems of N D3-branes at the toric singularity.

In passing from N = 1 to general N , the spectrum of BPS operators becomes much

more complicated, and in general the correspondence between BPS operators and string

theory objects has to be studied at the level of a generating set of BPS operators. For in-

stance, as explained in section 3.2 a generating set is provided by operators of the form (3.7),

namely the gauge invariant N times symmetric products of concatenated chains of fields

(analogous to the “single-determinant” operators of the N = 1 case). The set of all BPS op-

erators is obtained by taking products of these operators, and linear combinations thereof.

Let us focus on BPS operators given by linear combination of operators of the form (3.7),

to which we refer as ‘single-particle’ for the moment. In the AdS/CFT setup, such BPS

operators correspond to D3-brane states in the Hilbert space of the quantum mechanics in

the space parametrized by the coefficients {cP } in the defining equations of the holomor-

phic 4-cycles. A particular basis of this Hilbert space is given by the states (3.9), dual to

the operators (3.7).

In this section we show that E3-brane instantons provide, via the computation of the

non-perturbative field theory operators they induce, a set of BPS operators which provide
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a generating set for all ‘single particle’ BPS operators. Namely any ‘single-particle’ BPS

operator can be described as a linear combination of the basis provided by the E3-brane

instantons.13 At the level of the AdS/CFT setup, the D3-brane states corresponding to the

E3-brane instantons are those dual to determinant operators, as discussed in section 5.1,

and provide a basis of the same Hilbert space spanned by the states (3.9), as shown in

section 5.2. Therefore, although there is no one-to-one correspondence between BPS oper-

ators and E3-brane instantons, the E3-brane instantons do provide a generating set of BPS

operators. This is enough to support the view that the correspondence between E3-brane

instantons and BPS operators underlies the familiar one-to-one map between quantum

D3-brane states and BPS operators.

5.1 The determinant operators

The considerations in section 4 for the N = 1 case allow a simple generalization to arbitrary

N . Using the couplings between E3-brane instantons and D3-branes in the N = 1 case, we

may increase the range of D3-brane Chan-Paton indices to obtain the worldvolume fermion

modes and couplings of the general N system. Namely, for the operator OP corresponding

to any concatenated chain of bifundamentals described by a path P in the dimer, there is an

E3-instanton wrapped on a holomorphic 4-cycle with charged fermion modes and couplings

αOPβ. Here the modes α and β transform in the and , of the gauge groups where the

path P start and end, respectively (and which are the same for a mesonic operator).

Integration over these fermion modes leads to insertion of the field theory BPS operator

det OP = ǫp̃1,...,p̃N
ǫk1,...,kN

(OP )
p1k̃1

. . . (OP )
pN k̃N

. (5.1)

Equivalently, for each possible 4-cycle, or equivalently for each choice of monomials {cP }

in the defining equation, there is a BPS operator detOP .

The fact that this mechanism only generates determinant operators might suggest that

such operators cannot generate the whole set of BPS operators, in particular operators of

the form (3.7) with different entries OPI
. However, the fact that we have an operator for

each possible choice of 4-cycle (out of an infinite set, parametrized by the cP ) implies that

the set of determinant operators generates the complete Hilbert space of baryonic operators,

as we show in the next section. Note that the generating set of operators provided by these

D3-brane states associated with E3 branes is unfamiliar from the CFT viewpoint, since it

involves linear superpositions of operators with different conformal dimensions.

5.2 The space of general BPS operators and the Veronese map

Let us introduce the shorthand notation

(OP1
, . . . ,OPN

) = ǫp̃1,...,p̃N
ǫk1,...,kN

(OP1
)p1k̃1

. . . (OPN
)pN k̃N

(5.2)

The set of operators for all possible choices of paths {PI} forms a basis of BPS operators.

Let us consider the question of whether it is possible to reproduce the above operators by

considering linear combinations of the determinant operators (5.1).

13Note that we do not imply that one can take linear combinations of E3-brane instantons to achieve an

arbitrary BPS operator in the field theory.
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Consider first the simple example of the conifold with just two colours N = 2, and the

reduced problem of constructing all the possible operators of baryonic charge 2 involving

just by the two chains of bifundamentals A, ABAOne basis for these operators is given by

e1 = (A,A) , e2 = (ABA,ABA) , e3 = (A,ABA) (5.3)

and the general operator corresponds to a linear combination thereof. We denote the set

of these by M2.

The operators A, ABA correspond to two specific monomials of the homogeneous

coordinates of the conifold, that for simplicity we just call x, y: A → x, ABA → y. These

monomials define sections of a non-trivial line bundle over the conifold. The generic section

spanned by them is f = ax+by, where a, b are complex coefficients, in the defining equation

of the 4-cycle f = 0, dual to the corresponding operator. Consider the determinant operator

generated by an E3-brane instanton wrapped on this 4-cycle, namely

O(a, b) = det(f) = (f, f) = a2(x, x) + 2ab(x, y) + b2(y, y)

= a2(A,A) + 2ab(A,ABA) + b2(ABA,ABA) (5.4)

Hence E3-brane instantons lead to operators O(a, b) for arbitrary choices of a, b. In order

to show that this set is generating, we need to show that one can choose particular values

of (a, b) to obtain three linearly independent operators generating M2. In this case it is

easy to find that e.g.

l1 = O(1, 0) = e1 , l2 = O(0, 1) = e2 , l3 = O(1, 1) = e1 + e2 + 2e3 (5.5)

provide a basis of the same space of operators M2.

In order to generalize the above construction to arbitrary N , it is convenient to express

it in more geometric terms. Since the equation f = ax+ by = 0 is invariant under complex

rescalings of a, b, the set of such equations is a P
1, with homogeneous coordinates a, b.

Similarly, the BPS operators are given by linear combinations of the ei,
∑

ziei, up to overall

rescaling of the zi, namely they are parametrized by a P
2. The computation of the BPS

operator corresponding to an E3-brane instanton on a 4-cycle defined by (a, b) defines a map

v1 : P
1 → P

2

[a; b] → [a2; ab; b2] (5.6)

This is an example of a well know construction in algebraic geometry called the (degree 2)

Veronese embedding. The image set in P
2 is given by the degree 2 curve

z1z3 − z2
2 = 0. (5.7)

The set of operators O(a, b) will form a basis of M2 if there exist at least three points

in P
1 such that the vectors l(a, b) = a2e1 + abe2 + b2e3 form a basis of C

3. In geometric

terms, a basis will not be obtained only if the image v1(P
1) is contained in a hyperplane
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in P
2. It is a familiar result of algebraic geometry that the Veronese curve is indeed not

contained in any hyperplane.14 Hence the set of operators O(a, b) forms a generating set.

Let us pass on to the general case. Using the tools and the intuition we have just devel-

oped we can show that the set of BPS operators induced by all possible E3-brane instantons

form a generating set of all BPS operators of the quiver gauge theory for general N .15

We start the discussion explaining the general form of the Veronese map, which plays

a prominent role in the argument, and which is a simple generalization of the N = 2

discussion above. The general Veronese map is an embedding of P
m in P

n defined as

follows. Consider P
m parametrized by homogeneous coordinates [u0, . . . , um]. The set of

degree N homogeneous polynomials in these coordinates

∑

i0+···+im=N

wi0...im ui0
0 . . . uim

m (5.8)

defines a vector space of dimension
(

m+N
N

)

, with coordinates wi0...im . Let us take as the

target of our Veronese map P
n, with n =

(

m+N
N

)

− 1. This parametrizes, as above, the

set of homogeneous polynomials modulo an overall rescaling. The degree N Veronese map

is obtained by considering the N th power of a general monomial in the uk, namely it is

defined by the map

vN : P
m → P

n

wi0...im = ui0
0 . . . uim

m (5.9)

for i0 + · · · + im = N . The resulting Veronese variety vN (Pm) ∈ P
n can also be described

by the following set of quadrics, which follow from the specific form of the embedding:

wi0...imwj0...jm
= wk0...km

wl0...lm (5.10)

whenever i0 + j0 = k0 + l0, . . . , im + jm = km + lm. It is a general result that the variety

vN (Pm) ∈ P
n is not contained in any linear subspace of P

n.

The application of this result to our problem of mapping of BPS operators for the

conifold case should be clear by now. In fact, it can be used to solve the mapping problem

for arbitrary toric singularities, as we now argue. A generic toric variety can be described

as a symplectic quotient of C
d by the action of an abelian group K (K ∼ (C∗)d−3×∆ where

∆ is some abelian discrete group). Denoting x1, . . . , xd the homogeneous coordinates, the

supersymmetric 4-cycles on which one can wrap E3-brane instantons are given by equations

f =
∑

i1,...,id

ci1...1d
xi1

1 . . . xid
d = 0 (5.11)

14In this simple case the statement can be easily seen to be true, since it amounts to the trivial fact that

it is not possible to rewrite the quadratic equation (5.7) into a linear equation of the form
P

cizi = 0, for

any constant ci.
15As explained in the previous section, we need to consider processes involving multiple instantons, and

they correspond to multi-particle D3-brane states in AdS/CFT. For simplicity we restrict to single-particle

BPS operators, since they can generate the complete set of all BPS operators.
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that transform homogeneously under K. Let us momentarily restrict the infinite set of

coefficients aP = ci1...id to a finite set of m + 1. Then the set of holomorphic 4-cycles

parametrizes a P
m with homogeneous coordinates [ {aP }] = [a1, . . . , am+1]. As discussed in

section 4, every monomial xi1
1 . . . xid

d is associated to a concatenated chain of bifundamentals

in the quiver field theory,16 defining an operator OP . Increasing the range of Chan-Paton

indices to general N , an E3-brane wrapped on the holomorphic 4-cycle leads to fermion

zero modes and couplings αOPβ. Integration over fermion zero modes leads to the BPS

operator detOP = (OP , . . . ,OP ) in the 4d field theory. Expanding this determinant, i.e.

taking all possible degree N products of the monomials contained in f (or rather its field

theory translation), we obtain a linear combination of the set of operators of the form (3.7).

In this way the set of operators obtained by all possible embeddings of the instanton is

described by the degree N Veronese embedding from P
m to P

n, and we have argued above

that such a embedding spans a base of all possible operators.

In order to complete the argument we just need to remove the cutoff m, a step which

does not modify the conclusions.

6 Conclusions and outlook

In this paper we have discussed the field theory operators on the worldvolume theory of

systems of D3-branes at toric singularities induced by E3-brane instantons wrapped on

holomorphic 4-cycles on the Calabi-Yau geometry. We have argued that the resulting

correspondence between E3-branes on 4-cycles and BPS baryonic operators in the quiver

theory underlies and explains the AdS/CFT correspondence between wrapped D3-brane

states on AdS and BPS operators on the boundary theory. Let us suggest some further

applications and possible future research directions.

We have described the correspondence between E3-brane instantons and BPS operators

in terms of a generating set of the latter. Namely any BPS operator can be written as a

combination of the BPS operators directly induced by E3-brane instantons. This operation

has a well-defined meaning in the AdS/CFT context, where the wrapped D3-branes from

the E3-brane instantons form a complete set of quantum states of the Hilbert space dual to

the set of BPS operators. Since the operation of taking linear combination has a physical

meaning for the wrapped D3-brane states, there is a one-to-one map between wrapped

D3-branes and BPS operators.

It would be interesting to explore physical realizations of this map at the level of the

E3-brane instantons. One tantalizing possibility, suggested by the structure of the opera-

tors (3.7) and its dual states (3.9), is considering fractional instantons. In gauge theories,

fractional instantons are physical objects whose action and number of fermion zero modes

is a (typically 1/N) fraction of those for a genuine instanton. They have been suggested

(see e.g. [77]) as responsible for the gaugino condensate of SU(N) super-Yang-Mills (or

more generally for the non-perturbative superpotential of SQCD for Nf < Nc − 1). They

have also been proposed to play a prominent role in the strong coupling dynamics of more

general supersymmetric gauge theories. Although the physical interpretation of fractional

16Here we are simplifying slightly, and restricting ourselves to the single particle case.
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non-gauge D-brane instantons it far from clear, it is tempting to propose that a genuine

E3-brane instanton is made up of N fractional instantons, each coupling to a particular con-

catenated chain of bifundamentals along a dimer path P. In such interpretation, the BPS

operator (3.7) would correspond to a set of N fractional E3-brane instantons, each coupling

to a different path PI , I = 1, . . . , N . We leave this as an open direction for further research.

A second interesting tool to attempt the formalization of a one-to-one map between

BPS operators and E3-branes is provided by the master space of the supersymmetric quiver

theory introduced in [36, 37]. It describes the set of gauge invariant BPS operators of the

D3-brane field theory, and has a systematic algebraic geometry description for the case of

field theories on D3-branes at singularities. Moreover, it helps in reducing the problem of

counting operators for general N to a plethystic exponentiation of the counting problem for

the N = 1 theory. Since for the N = 1 theory there exists a nice explicit map between BPS

operators and E3-brane instantons, it sounds plausible that the master space can provide a

meaningful physical one-to-one map between BPS operators and E3-branes for general N .

Finally we would like to emphasize that our discussions of the field theory operators

induced by general E3-brane instantons should have interesting applications to model build-

ing. Indeed, in the construction of realistic particle models on D3-branes at singularities

it is natural to look for potential sources for particular interesting field theory operators,

which are forbidden in perturbation theory and could be generated by instantons. Our

tools can be used to propose precisely the kind of E3-brane instanton required for a given

field theory operator. Thus our work allows for a broad generalization of the work in [61].

Another recent model building proposal related to our work is D-brane instanton mediated

supersymmetry breaking in [78].

We expect much progress on the systematic understanding of E3-brane instantons and

their corresponding BPS operators for these and other new directions.
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A Short review of dimer models

In this appendix we would like to present a short review of the main aspects of dimer model

technology that enter in our analysis above. For a more in-depth discussion, the reader is

advised to consult the excellent reviews [22, 23].
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Quiver Dimer

Figure 6. Quiver and dimer for a Z2 orbifold of the conifold. Faces in the dimer correspond to

gauge groups, edges correspond to bifundamentals and each vertex corresponds to a superpotential

term. Edges have an orientation determined by the coloring of the adjacent nodes.

A.1 Quiver gauge theories and dimer diagrams

The gauge theory of D3-branes probing toric threefold singularities is determined by a

set of unitary gauge factors (of equal rank in the absence of fractional branes, which we

do not consider for the moment), chiral multiplets in bi-fundamental representations, and

a superpotential given by a sum of traces of products of such bi-fundamental fields. The

gauge group and matter content of such gauge theories can be encoded in a quiver diagram,

such as that shown in figure 6a, with nodes corresponding to gauge factors, and arrows to

bi-fundamentals. The superpotential terms correspond to closed loops of arrows, but the

quiver does not fully encode the superpotential.

Recently it has been shown that all the gauge theory information, including the gauge

group, the matter content and the superpotential, can be encoded in a so-called brane tiling

or dimer graph [18, 19].17 This is a tiling of T
2 defined by a bi-partite graph, namely one

whose nodes can be colored black and white, with no edges connecting nodes of the same

color. The dictionary associates faces in the dimer diagram to gauge factors in the field

theory, edges with bi-fundamental fields (fields in the adjoint in the case that the same

face is at both sides of the edge), and nodes with superpotential terms. The bi-partite

character of the diagram is important in that it defines an orientation for edges (e.g. from

black to white nodes), which determines the chirality of the bi-fundamental fields. Also,

the color of a node determines the sign of the corresponding superpotential term.

The explicit mapping between this bipartite graph and the gauge theory, is illustrated

in one example in figure 6.

17The brane tiling / dimer diagram can be dualized to an improved quiver diagram, the periodic quiver,

which also encodes all this information.
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W(0,−1)

(0,1)

W = 0

(−1,0) (1,0)

(1,0)(−1,0)

Σ

Figure 7. a) An example of a web diagram (for the complex cone over F0); b) the corresponding

Riemann surface Σ in the mirror geometry.

A.2 Dimer diagrams and the mirror Riemann surface

In [21] it was shown how, using mirror symmetry, it is possible to relate in a useful and

explicit way the gauge theory on the D3 branes on the singularity and dimer models. Let us

summarize the results of that paper here. The mirror geometry to a Calabi-Yau singularity

M is specified by a double fibration over the complex plane W given by

W = P (z,w) (A.1)

W = uv (A.2)

with w, z ∈ C
∗ and u, v ∈ C. Here P (z,w) is the Newton polynomial of the toric diagram

of M. The surface W = P (z,w) describes a genus g Riemann surface ΣW with punctures,

fibered over W . The genus g equals the number of internal points of the toric diagram. The

fiber over W = 0, denoted simply Σ, will be important for our purposes. It corresponds to

a smooth Riemann surface which can be thought of as a thickening of the web diagram [74–

76] dual to the toric diagram, see figure 7.

At critical points W = W ∗, a cycle in ΣW degenerates and pinches off. Also, at W = 0

the S1 in W = uv degenerates. One can use these degenerations to construct non-trivial

3-cycles in the mirror geometry as follows. Consider the segment in the W -plane which

joins W = 0 with one of the critical points W = W ∗, and fiber over it the S1 in W = uv

times the 1-cycle in ΣW degenerating at W = W ∗, see figure 8. The result is a 3-cycle with

an S3 topology. The number of such degenerations of ΣW , and hence the number of such

3-cycles, is given by twice the area of the toric diagram.

Mirror symmetry specifies that the different gauge factors on the D3-branes in the

original singularity arise from D6-branes wrapping the different 3-cycles. The 3-cycles on

which the D6-branes wrap intersect over W = 0, precisely at the intersection points of

the 1-cycles in ΣW=0. Open strings at such intersections lead to the chiral bi-fundamental

fields. Moreover, disks in Σ bounded by pieces of different 1-cycles lead to superpotential

terms generated by world-sheet instantons.

Hence, the structure of the 3-cycles, and hence of the gauge theory, is determined by

the 1-cycles in the fiber Σ over W = 0. This structure, which is naturally embedded in a
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W

W = 0 W = W*

cycle in P(z,w)

1
S  in u,v

Figure 8. Structure of the non-trivial 3-cycles in the geometry W . They are constructed by

fibering over the segment joining W = 0 and W = W ∗, the S1 in the uv fiber (degenerating at

W = 0) times the 1-cycle in the P (z, w) fiber degenerating at W = W ∗.

A1

A2

A3

A3

A4

B1

B2
B3

B3

B4C1

C2

C2

C3

C4C4

D1

D2

D2

D3

D4

Figure 9. Dimer of the conifold with the corresponding zig-zag paths.

T
3 (from the T

3 fibration structure of the mirror geometry), admits a natural projection to

a T
2, upon which the 1-cycles end up providing a tiling of T

2 by a bi-partite graph, which

is precisely the dimer diagram of the gauge theory.

This last process is perhaps better understood (and of more practical use) by recovering

the Riemann surface Σ from the dimer diagram of the gauge theory, as follows. Given a

dimer diagram, one can define zig-zag paths (these, along with the related rhombi paths,

were introduced in the mathematical literature on dimers in [79, 80], and applied to the

quiver gauge theory context in [20]), as paths composed of edges, and which turn maximally

to the right at e.g. black nodes and maximally to the left at white nodes. They can be

conveniently shown as oriented lines that cross once at each edge and turn at each vertex,

as shown in figure 9.

Notice that at each edge two zig-zag paths must have opposite orientations. For dimer

models describing toric gauge theories, these zig-zag paths never intersect themselves and

they form closed loops wrapping (p, q) cycles on the T
2. This is shown for the conifold

in figure 9 where the zig-zag paths A, B, C and D have charges (0, 1), (−1, 1), (1,−1),

(0,−1) respectively.
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b) A
B

C

D

Figure 10. a) Tiling of the Riemann surface (which is topologically a sphere, shown as the complex

plane) for the case of D3-branes at a conifold singularity. b) The web diagram, providing a skeleton

of the Riemann surface, with asymptotic legs corresponding to punctures (and hence to faces of the

tiling of Σ, and zig-zag paths of the original dimer diagram).

As shown in [21], the zig-zag paths of the dimer diagram associated to D3-branes at a

singularity lead to a tiling of the Riemann surface Σ in the mirror geometry. Specifically,

each zig-zag path encloses a face of the tiling of Σ which includes a puncture, and the (p, q)

charge of the associated leg in the web diagram is the (p, q) homology charge of the zig-zag

path in the T
2. The touching of two of these faces in the tiling of Σ corresponds to the

coincidence of the corresponding zig-zag paths along an edge of the dimer diagram. The

tiling of Σ for the conifold is shown in figure 10a, while the corresponding web diagram is

shown in figure 10b.

The dimer diagram moreover encodes the 1-cycles in the mirror Riemann surface,

associated to the different gauge factors in the gauge theory. Consider a gauge factor

associated to a face in the dimer diagram. One can consider the ordered sequence of zig-zag

path pieces that appear on the interior side of the edges enclosing this face. By following

these pieces in the tiling of Σ one obtains a non-trivial 1-cycle in Σ which corresponds

precisely to that used to define the 3-cycle wrapped by the mirror D6-branes carrying that

gauge factor. Using this map, it is possible to verify all dimer diagram rules (edges are bi-

fundamentals, nodes are superpotential terms) mentioned at the beginning. The non-trivial

1-cycles in the mirror Riemann surface for the case of the conifold are shown in figure 11.

A.3 Resolution of the singularity

In the discussion in the main text, we are particularly interested in seeing how does resolu-

tion of the singularity appear on the dimer model description. This resolution is expected

to be represented in terms of the gauge theory as a Higgsing of some fields, in such a way

that the low energy theory after Higgsing is the gauge theory of branes placed at the two

daughter singularities. As shown in [81], it is possible to give a simple and beautiful recipe

for understanding which fields get vevs using the mirror description of the system. Let us

summarize the main points of the procedure here.
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Figure 11. Tiling of the Riemann surface for the case of D3-branes at a conifold singularity, with

the 1-cycles corresponding to the two gauge factors (shown as zig-zag paths of the tiling of Σ).

In terms of the web diagrams, resolving the singularity corresponds to giving a finite

length to one of the interior segments, representing a blowup of a P
1 in the toric geometry.

The close relation between the Riemann surface Σ and the toric diagram suggests a way

of reading the effect in the dimer, and hence in the gauge theory, of the blowup.

The basic idea is that one should identify which external legs of the web diagram go to

which daughter singularity after the resolution. In the dimer this divides the zig-zag paths

into two sets, since we have a one to one map between zig-zag paths and external legs of

the web diagram of the toric singularity. Let us call the zig-zag paths in the first set paths

of type 1 and those in the second set paths of type 2. In turn, since each edge in the dimer

model is crossed by exactly two zig-zag paths, this divides the set of edges into three, namely

those where two zig-zags of type 1 meet, those were two of type 2 meet, and those where

zig-zag paths of mixed type meet. Let us denote this as edges of type 1, 2 and 3 respectively.

In terms of the mirror surface, a resolution consists of sending a given set of external

legs to infinity (actually finite distance, but we will be integrating out the corresponding

massive mediators). Then the theory divides into two sectors, one corresponding to each

daughter singularity. In terms of dimer diagrams, what we have is that the original dimer

diagram decomposes into two daughter diagrams, that we can call 1 and 2. The subdimer 1

is obtained from the original dimer diagram by removing all edges of type 2, and similarly

for the subdimers of type 2. Edges of type 3 remain in both diagrams. This can be seen

quite intuitively from the mirror, since edges of type 1 and 2 are localized in different sides

of the resolution, while edges of type 3 can communicate with both sectors.

In terms of the gauge theory, what we have done is a Higgsing of the original theory,

where we assign the following vacuum expectation values to bifundamentals:

Φ1 =

(

0 0

0 v

)

, Φ2 =

(

v 0

0 0

)

, Φ3 =

(

0 0

0 0

)

, (A.3)

where Φi denotes the vev for the fields of type i. We see that these vevs force us to introduce
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Figure 12. C3/Z2 × Z2 → SPP resolution in terms of the toric diagram. We have also drawn

superposed, in color, the external legs of the web diagram. The desired resolution divides this set of

external legs into A,B (in red) corresponding to a smooth geometry, and the rest of legs (in blue),

which describe the SPP daughter singularity.

Fayet-Iliopoulos terms in order to cancel the D-terms and remain in a supersymmetric

vacuum. Also, they trigger the recombination of some gauge factors into their diagonal

combinations, which in terms of the dimer is represented as the recombination of the two

faces adjacent to the edge that gets a vev.

Let us show how the procedure works for the C
3/Z2×Z2 → SPP resolution considered

in the text.18 The description of the resolution we are after in terms of toric diagrams is

shown in figure 12.

According to the general procedure outlined in this section, finding which field gets

a vev in this resolution (in order to describe the SPP side) is just a matter of finding

out on which edge A and B intersect.19 This edge is localized on the flat space daughter

“singularity”, and disappears from the SPP theory. The relevant zig-zag paths are shown in

figure 13. They intersect over X34, and thus this is the field that gets a vev on the SPP side.

Proceeding on a similar fashion with the C,D zig-zag paths (for example) one could

higgs down the theory to the conifold, as we have done in the text.

18We do not really need the technology described in this section in order to study this resolution, simply

by giving a vev to any bifundamental of the C
3/Z2 × Z2 theory we end up in the SPP theory. We have

chosen to describe the general method in order to make explicit how the fine details of the discussion in

section 4.5 work. Other more involved examples which better illustrate the main idea can be found in [81].
19Note that there is no invariant way of defining A and B in this example, and any other choice of a

couple of zig-zag paths with different (p,q) charges will lead to the same IR theory.
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Figure 13. The A and B zig-zag paths for the C3/Z2 × Z2 → SPP orbifold.
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